Использование включения и выключения генов для решения проблемы старения

Содержание

Штурм и натиск генной терапии старения

Использование включения и выключения генов для решения проблемы старения

Концепция генной терапии существует на протяжении последних двадцати-тридцати лет. Она заключатся в том, что наиболее радикальный способ борьбы с заболеваниями — это уничтожение самой генетической причины болезни, а не его следствий. Способ борьбы с этими изменениями заключается во введении в клетку новой генетической информации, призванной исправить ту, с которой связана болезнь.

Экспрессия генов и генная терапия

Концепция генной терапии существует на протяжении последних двадцати-тридцати лет. Она заключатся в том, что наиболее радикальный способ борьбы с заболеваниями — это уничтожение самой генетической причины болезни, а не его следствий.

Причиной может быть нарушение определенного гена (мутация), которое передалось от родителей при наследственных заболеваниях, или мутация гена уже во взрослом организме, вызывающая, например, рак.

Кроме того, причиной может являться просто слишком высокая (или, наоборот, низкая) активность нормального гена, которая увеличивает риск хронического заболевания, такого как диабет или атеросклероз.

Способ борьбы с этими изменениями заключается во введении в клетку новой генетической информации, призванной исправить ту, с которой связана болезнь.

Вначале немного углубимся в теорию. Молекула ДНК — дезоксирибонуклеиновая кислота — является носителем кода, который управляет развитием и функционированием всего живого. В ДНК содержится программа, которая обеспечивает превращение одной единственной исходной клетки в слаженно работающий организм, состоящий из многочисленных клеток, объединенных в разнообразные ткани и органы.

Расшифровка структуры ДНК в 1953 году стала одним из поворотных моментов в истории биологии. За это открытие ученым

Джеймсу Уотсону, Фрэнсису Крику и Морису Уилкинсу

была присуждена Нобелевская премия по физиологии и медицине 1962 года.

ДНК — огромная молекула, которая состоит из тысяч маленьких молекул — нуклеотидов, четырех разных типов: гуанин (G), цитозин (С), тимин (T) и аденин (A). Нуклеотиды соединяются друг с другом, образуя цепочку; молекула ДНК состоит из 2х таких цепочек, закрученных в двойную спираль.

При соединении 2х цепей выполняются следующие правила: аденин всегда соединяется с тимином, а гуанин — с цитозином. Таким образом, напротив тимина из одной нити всегда будет находиться аденин из другой.

Такое расположение позволило объяснить механизмы копирования ДНК при делении клетки. Две нити спирали расходятся, а затем к каждой из них достраивается точная копия ее бывшей “партнерши” по спирали. По такому же принципу, как с негатива в фотографии печатают позитив.

Следующая революция в изучении ДНК произошла спустя 50 лет, в 2003 году, когда был завершен огромный проект «Геном человека». Он позволил расшифровать все 19 000 генов нашего организма и открыл небывалые возможности для медицины.

Ген — это участок молекулы ДНК, в котором закодирован полипептид (часть молекулы белка) или функциональная РНК. Длиной он, как правило, в несколько сотен нуклеотидов, но бывают и исключения. Самые маленькие гены человеческого генома — гены транспортных РНК — составляют всего 76 пар нуклеотидов, а самый большой ген — ген белка дистрофина — 2,4 млн.

У наиболее развитых организмов, в том числе и человека, гены часто бывают разделены фрагментами «бессмысленной», некодирующей ДНК. ДНК человека обвернута вокруг молекулярного остова из белков, вместе с которым она образует хромосому. Вся ДНК человека помещается в 46 хромосомах.

Если сравнить клетку с заводом, то ДНК будет чем-то вроде информации с жесткого диска, хранящейся в канцелярии завода. Чтобы завод начал работать, эту информацию необходимо транслировать на все устройства в цехах завода — эту роль в клетке выполняют рибонуклеиновые кислоты — РНК. И, наконец, продукция, которая начинает собираться в цехах завода по этой программе — это клеточные белки.

Процесс считывания информации с ДНК получил название «экспрессия генов».

Если ДНК — это закодированная информация обо всех процессах организма, то белки — основные исполнители и контроллеры этих процессов. Существует огромное количество разных классов белков, принимающих участие во всех важных для организма процессах.

Существуют белки, которые укоряют протекание химических реакций в организме; выполняют строительную функцию — как своего рода арматура придают форму клеткам и их частям; защищают организм, обезвреживая токсины, патогенных бактерий и вирусов; регулируют считывание информации с ДНК и синтез соответствующих белков.

Также есть белки, которые передают сигналы между клетками, тканями и о́рганами, транспортируют различные молекулы по клеткам и разным системам; в белках запасается энергия; белки являются рецепторами — запускают каскад клеточных событий в ответ на определенные сигналы из внешней среды или из внутренних систем организма; они могут выполнять моторную функцию — обеспечивают движения организма, например, сокращение мышц.

Генная терапия — это вмешательство в работу клеточного «завода» по производству белков. Она позволяет, как активировать работу нужных генов, так и «выключать» вредные. В первом случае в клетку доставляют ген, с которого начинает считываться белок, необходимый для терапии заболевания. А во втором — в клетку вводятся регуляторные РНК, которые блокируют экспрессию «вредного» гена.

Чаще всего блокировка генов достигается за счет того, что в клетку доставляют малые интерферирующие РНК (миРНК), которые связываются с РНК гена, который нужно «выключить». Связывание миРНК и РНК блокирует синтез белка и в конечном итоге приводит к деградации РНК.

Этот процесс носит название интерференции РНК. Он был открыт в 1998 году американскими учеными

Эндрю Файер и Крейг Мелло

и был признан настолько важным, что уже в 2006 году была вручена Нобелевская премия в области физиологии и медицины за его открытие.

Генная терапия: успехи и тенденции

Генная терапия возникла более 25 лет назад. Первое успешное клиническое исследование (на людях) было проведено в 1989 по генной терапии тяжелого комбинированного иммунодефицита. В настоящий момент генная терапия бурно развивается.

По данным журнала Gene Medicine, в 2015 году было проведено 2210 клинических испытаний по генной терапии различных болезней. Это, преимущественно рак (64%), моногенные заболевания, вызванные мутацией в одном гене (9,5%), сердечно-сосудистые (7,9%) и инфекционные (7,9%).

По генной терапии старения не проведено ни одного клинического испытания, что неудивительно, поскольку старение до сих пор не признано болезнью. Кроме того, генная терапия старения пока еще очень молодая и развивающаяся область.

Для ряда заболеваний генная терапия оказалась вполне успешной. Среди них наследственные заболевания иммунной системы — тяжелый комбинированный иммунодефицит, синдром Вискотта-Олдрича и хроническая гранулематозная болезнь; наследственная болезнь, связанная с нарушением обмена веществ — адренолейкодистрофия; наследственное заболевание сетчатки — амавроз Лебера и некоторые формы рака.

К настоящему времени уже 4 генотерапевтических лекарства допущены к продаже. В Китае в 2003 году выпущен «Гендицин» (Gendicine) — препарат для лечения плоскоклеточного рака головы и шеи на основе гена p53, а в 2006 — «Онкорин» (Oncorine) — онколитический вирус для лечения назофарингеальной карциномы.

В Европе в 2012 году запущено производство препарата «Глибера» (Glybera), предназначенного для терапии наследственного дефицита липопротеинлипазы (ЛПЛ) путем доставки одноименного гена. А в России допущен к продаже препарат «Неоваскулген» для лечения заболеваний периферических артерий.

Он представляет собой ген VEGF (фактора роста эндотелия сосудов).

Основная проблема генной терапии — как доставить терапевтический ген (или РНК) в клетки-мишени. Обычно для этого используют векторы для доставки — переносчики генетических конструкций. Они не позволяют ДНК разрушиться в крови, обеспечивают выход ДНК из капилляров (мелких кровеносных сосудов) в ткани и проникновение внутрь клеток и в клеточное ядро.

Чаще всего в качестве векторов используют вирусы, поскольку они обладают очень эффективными — отточенными эволюцией — механизмами проникновения в клетки животных. Инфицируя клетку в природе, вирус доставляет свой генетический материал в ядро этой клетки и начинает воспроизводиться и нарабатывать свои белки, используя механизмы экспрессии генов клетки хозяина.

Ученые упростили вирусы, убрав из них гены, вовлеченные в патогенез и вызывающие иммунный ответ организма, и превратили в векторы для доставки генетического материала.

Наиболее популярными вирусами, используемыми в генной терапии, являются аденовирусы (их применяют в 22,2% клинических исследований), а также — ретровирусы (на их долю приходится 18,4% работ). Только набирают популярность более новые векторы — аденоассоциированные вирусы (6% клинических испытаний) и лентивирусы (5% исследований).

Самыми перспективными для генной терапии представляются аденоассоциированные (AAV) и лентивирусные векторы. Первые позволят доставить генетическую конструкцию в организм системно (то есть в ряд тканей и органов) без побочных эффектов. Правда, они не встраивают генетический материал в геном, так что доставленный ген со временем может теряться.

Если же необходимо обеспечить высокую эффективность доставки и встраивание доставляемой конструкции в геном, следует применять лентивирусные векторы.

Однако они не подходят для системной доставки и применяются для локального введения в небольшой участок ткани или — в клетки в пробирке.

Кроме того, они могут вызывать побочные эффекты из-за встраивания в нежелательные места генома (например, в протоонкогены и вызывать рак).

Использование технологии редактирования генома CRISPR/Cas9 открывает новые возможности в генной терапии. CRISPR/Cas9 позволяет очень точно и безопасно изменять ДНК клеток.

И если совместить технологию CRISPR/Cas9 с доставкой при помощи аденоассоциированных вирусов, то это, по-видимому, позволит системно воздействовать на организм и совершенно безопасно изменять геном очень большого числа клеток.

То есть ее использование позволяет совместить достоинства, как аденоассоциированных, так и лентивирусных векторов.

В природе эта система имеется у бактерий и архей. Она используется для защиты от бактериофагов (вирусов бактерий) или других чужеродных генетических элементов. В случае заражения клетки система CRISPR/Cas узнает последовательности чужеродной ДНК и разрезает ее. Впервые система CRISPR/Cas была обнаружена еще в 1987 году, однако ее функции стали активно изучаться, только начиная с 2005 года.

Поскольку CRISPR/Cas сверхточно узнает и разрезает ДНК, ученые решили приспособить ее для редактирования генома млекопитающих. Использование CRISPR/Cas превзошло все ожидания. Она позволила с минимальным числом ошибок как «выключать» нужные гены, так и встраивать новые гены в строго определенные участки генома.

Система CRISPR/Cas9 состоит из эндонуклеазы Cas9 — фермента, разрезающего ДНК, и направляющей РНК, связывающаяся только со строго определенной геномной последовательностью. Такая система позволяет найти и разрезать участки генома в нужном месте, нацеливаясь на них направляющей РНК.

Направляющая РНК подбирается исследователями самостоятельно, так что можно нацелить систему CRISPR/Cas9 на любой нужный участок генома.

А совсем недавно, в декабре 2015 года научная группа Фенга Джанга видоизменила данную систему так, что она стала и вовсе безошибочной, что было опубликовано в ведущем научном журнале Science. Ученые заменили 3 аминокислоты («кирпичика», из которых состоит белок) в эндонуклеазе Cas9, после чего число ошибок такой системы свелось практически к нулю.

Использование CRISP/Cas9 особенно актуально для генной терапии старения, где требуется воздействовать на пути долголетия, общие для большинства клеток организма.

Типы векторов для доставки и их свойства

Аденовирусы (AV) и аденоассоциированные вирусы (AAV) могут использоваться как для узконаправленной доставки генетического материала в определенные ткани, так и для системной доставки в организм (то есть — в большое число органов и тканей). Они доставляет генетический материал очень эффективно, проникая в ядра как делящихся, так и неделящихся клеток.

Важной особенностью этих вирусов является то, что они не встраивают доставляемые гены в геном. Правда, в случае аденоассоциированных векторов все же показано, что

Источник: http://www.NanoNewsNet.ru/articles/2017/shturm-natisk-gennoi-terapii-stareniya

Эпигенетика: наука об управлении генами

Использование включения и выключения генов для решения проблемы старения

Известно, что развитие организма управляется ДНК, а именно: РНК и функциональными молекулами белков.

Их образование носит последовательный характер, а информацию об их строении передаёт по наследству ген.

В свою очередь, каждый ген (или их группа) — это определённый участок ДНК, кодирующий белки на отдельные действия. Например, приказывает им быть клетками сердца или сосудов, роговицы или ногтевой пластины.

Однако влияние на клетку свойственно не всем генам. Некоторые из них лишь управляют себе подобными, а те, в свою очередь, кодируют белки. Также не все гены организма вообще работают: одни из них могут быть просто «выключенными», а при определённых условиях они «включаются».

Наука об управлении генами

Появляется закономерный вопрос: какие факторы программируют гены на работоспособность и бездействие без нарушения цепочки ДНК? Именно этим занимается сравнительно молодая наука — эпигенетика. цель ученых-эпигенетиков — объяснить механизм активности генов и научиться влиять на факторы, управляющие ими.

Что данные исследования дадут человечеству?

Можно убедительно говорить, что люди забудут о многих заболеваниях наследственного характера. И это не всё: человек может научиться управлять своим геномом, исключая «поломку» клеточного ядра, обеспечивая качественное деление клеток в организме.

– большая продолжительность жизни

Достичь таких целей можно не только в будущем при условии создания инновационных лекарственных препаратов, воздействующих на плохую наследственность. Эпигенетики открывают новые концепции для профилактики «поломки» организма на клеточном уровне. И уже сейчас объясняют, как можно самостоятельно приблизиться к этому.

Главный герой эпигенетики

Эпигенетики назвали механизм управления клеткой эпигеномом. Именно он командует геном: сообщает ему, когда активироваться, какими свойствами наделить клетку, как она должна развиваться, где и когда. А также: сколько она будет жить, станет ли восприимчивой к болезням, каким именно, и все другие условия её существования.

Что собой представляет эпигеном?

Следует отметить, что геном клетки (её наследственный материал) и эпигеном принципиально отличаются своими задачами. Геном любых клеток человека — одинаковый. Он не меняется в зависимости от их назначения и функций; несёт информацию, но не решает, как ею распорядиться.

А эпигеном находится «над ним», он включает в себя все эпигенетические изменения наследственного материала. Его управление происходит за счёт так называемых «переключателей», которые включают/выключают определённые группы или отдельный ген, когда появляются провоцирующие факторы.

Именно при помощи переключателей учёные смогли понять, какие из генов (из 3-х млрд молекул, составляющих ДНК) выключены у современных людей по сравнению с неандертальцами. К этому открытию исследователи шли несколько лет, пока пытались «собрать» эпигеном человека, который сейчас называют вторым генетическим кодом или программой по управлению генами.

– гены, отвечающие за психические нарушения в ДНК современного человека, были выключены у неандертальцев (последние не страдали психическими патологиями)

Речь идёт о психических отклонениях, приводящих к шизофрении, аутизму, болезни Альцгеймера. Данные открытия представляют ценность тем, что стали возможны лишь при расшифровке эпигенома, ведь структура ДНК при этом остаётся постоянной.

Анализ генома человека: интересные факты

Благодаря открытию переключателей, учёные смогли объяснить результат секвенирования генома человека, которое завершилось в 2003 г. Секвенирование — переложение на текст нуклеотидной последовательности ДНК.

– генетический код амёбы и человека отличается в 200 раз (у амёбы он длиннее)

Отсюда вопрос: почему у высокоразвитого организма человека такой короткий генетический код по сравнению с амёбой? Эпигенетики объясняют это так: в пределах одного наследственного кода синтезируется множество вариантов белков, они умеют преобразовываться, а обеспечивает данную регуляцию именно эпигеном. Таким образом, сравнительно небольшое число генов создаёт сложнейший организм человека. Макроотличия между людьми и схожими с ними по геному шимпанзе также состоят именно в эпигеноме.

Гистоновый код как инструмент эпигенома

Следует отметить, что управление генами происходит через метильные группы посредством гипо- и гиперметилирования. Процесс осуществляется добавлением метильной группы к цитозину (одной из 4-х молекул связей ДНК).

Гипометилирование приводит к включению, а гиперметилирование — к выключению метильных групп. Таким образом, создаётся активация/деактивация определённых генов. Этот эффект помогает управлять болезнями.

Например, деактивация гена каспазы CASP3 исключает развитие болезни Альцгеймера.

Человек может влиять на процесс метилирования, принимая доноры метильных групп в виде таблеток, которые сейчас активно предлагает медицина.

Однако учёные определили, что в этом случае отсутствует избирательный момент, и, например, выключаются не только патологические, но и необходимые для здоровья гены.

Это значит, что искусственный процесс метилирования остаётся нестабильным, и человек может спровоцировать у себя развитие смертельной патологии.

Кроме метилирования на модификацию белков оказывают влияние фосфорилирование и ацетилирование. При этом речь идёт о гистонах, так как именно эти белки «упаковывают» нити ДНК в хромосомы.

Гистоны располагаются на поверхности нуклеосом.

Набор данных модификаций (метилирование, фосфорилирование, ацетилирование) называется: гистоновый код, и от него зависит доступность к молекуле ДНК регуляторных факторов, а значит — экспрессия генов.

Стоит отметить, что большую часть гистонового кода составляет метилирование. В сущности именно гистоновый код и является эпигенетическим инструментом влияния на гены. От него зависит включение/выключение и передача данной «программы» по наследству.

От чего зависит поведение эпигеномов и как влиять на них природными способами?

Исследователи пришли к выводу, что на эпигеном человека оказывает влияние окружающая среда. При помощи «переключателей» люди приспосабливаются к определённому образу жизни.

Эти возможности «записываются» не в ядре клетки (не в гене, не во всей ДНК), но в эпигеноме, и сохраняются в течение жизни. А при зачатии  ребёнка  передаются по наследству.

Эпигеном новорождённого пластичен, максимально адаптивен и восприимчив к сигналам извне, но выстраиваясь несколько по иному, чем у  его родителей, он имеет всё же некоторую наследственную память.

Именно поэтому на будущем потомстве отражается образ жизни кровных предков. В поведении детей, внуков прослеживаются привычки родителей, дедушек и бабушек. Вследствие этого напрашивается вывод: человек способен сам изменить свойства своего организма в лучшую сторону, изменив образ жизни на здоровый. И, наоборот.

При этом не только питание отражается на риске заболеть и возможности быть здоровым. Поведенческие привычки, характер также имеют значение. Таким образом, человек может манипулировать своими «переключателями» и совершенствоваться на психическом, физическом, а, точнее сказать, на клеточном уровне.

Как и зачем можно расшифровать свою ДНК?

Благодаря этому, перспективы управления человеком своим геномом приобретают вполне возможное обоснование. Уже сейчас человек может получить расшифровку своей ДНК, обратившись в коммерческие фирмы, специализирующиеся на биотехнологиях.

Открытая перспектива

Эпигенетические технологии стремительно развиваются и сегодня становятся доступными простому человеку.

Данные исследования стали возможны, благодаря революционному прорыву в изучении преобразования наследственной информации гена  РНК -посредником в белок.

Процесс называется экспрессией генов, и регулируется он эпигеномом. А непосредственно на эпигеном может оказывать влияние человек, изменяя способ жизни, привычки.

Однако этого мало. Человек, скорее всего, захочет контролировать ситуацию в режиме «on-line», то есть, сейчас, а не в перспективе на будущие годы и следующие поколения своего рода. Этот вопрос на сегодняшний день остаётся открытым.

Будущее сегодня: применение ДНК-микрочипа

Для определения экспрессии генов проводится секвенирование РНК, также специалисты применяют ДНК-микрочип. Последний представляет собой матрицу, в которую помещён геном человека.

Достаточно взять каплю крови, чтобы определить развитие тяжёлых заболеваний в будущем.

Уже доказано, что из часто встречающихся патологий таким способом легко определяется рассеянный склероз за 15 лет до его появления.

В сущности, ДНК-микрочип (биологический микрочип) является  устройством идентификации генов, генетическим паспортом, который мог бы иметь каждый человек.

Принцип работы чипа состоит в параллельной гибридизации, смешивании предварительно помеченных РНК или кДНК, выделенных из биологического образца (мишеней) и специфичных фрагментов генов (ДНК-зондов), нанесённых в строго регулярном порядке на подложку ДНК-матрицы с последующим считыванием полученных результатов лазером или иным детектирующим устройством и автоматической обработкой данных компьютерными системами.

– получение результатов, идентификация генов или вирусов, предрасположенности человека к болезням

Следует отметить, что в РФ использование ДНК-матриц из научно-исследовательской области переносится в диагностические центры и постепенно входит в обыденную жизнь, а в Израиле технология применяется для превентивной диагностики рассеянного склероза и других патологий. Прибор выглядит, как плоская кассета величиной со стандартный спичечный коробок.

Но есть уверенность, что в будущем он будет величиной с микрочип мобильного телефона, возможно, кластерным и наноразмерным. Такой чип можно будет ввести под кожу или в кровеносную систему, и он станет информатором а, возможно, и регулятором здоровья с рождения человека.

Но многие люди скорее предпочтут носить его «independently and outside their own body»  – независимо и вне их собственного  тела.

Три процента кодирования

Вернувшись к управлению клеткой, следует отметить: именно от эпигеномов зависит качественная экспрессия белка. Если «переключатели» «сломаются», процесс включения/выключения нарушится, и это станет стартом для развития болезни. Человеку надо научиться управлять своим эпигеномом, тогда включенными будут лишь необходимые для долголетия гены.

– уровень жизни прямых предков

Следует сказать, что большая часть ДНК (97%) является некодирующей. Лишь 3% генома человека представлено генами, способными к кодированию.

Огромная некодирующая часть молекулы, по мнению учёных, влияет на мутации и эволюционные процессы организма.

Эта часть науки изучена не полностью и требует детальных исследований скрывающихся здесь прошлых и, возможно, будущих адаптационных возможностей человека.

Персонализированная генная медицина

Своими инновационными исследованиями эпигенетики приближают человечество к созданию и эффективному использованию системы индивидуально точной, прецизионной, персонализированной медицины.

Лечение в таком случае основывается на генетических особенностях организма. Управление наследственным кодом позволяет получить принципиально новые способы лечения рака, сердечнососудистых патологий, болезней Паркинсона и Альцгеймера.

А также стимулирует людей вести качественно лучшую жизнь, чтобы оставаться молодыми и здоровыми.

В статье использованы фото, скопированные с сайта: usiter.com

Administrator

Источник: http://geteka.com/?p=119

Наука открыла ген старения: удастся ли продлить жизнь?

Использование включения и выключения генов для решения проблемы старения

Кто из нас не хотел бы жить вечно? Если победить смерть, сколько всего можно успеть, сколькому научиться! И, как ни фантастично это звучит, с каждым годом наука все ближе и ближе к открытию гена старения человека. «Геном Питера Пена» – так группа учёных из Норвегии и Великобритании назвала, открытое ими сочетание генов, отвечающих за процесс старения.

Наличие этих генов и их правильная работа позволяют некоторым людям выглядеть намного моложе своих лет.

Это значит, что, если в природе человека уже есть примеры долголетия, вызванного этими генами, продление жизни каждого остаётся лишь делом времени.

Учитывая темпы развития генетики, мы настолько близки к решению проблемы продления жизни, что с большой вероятность это открытие будет совершенно уже в нашем веке.

Бессмертие возможно?

Элизабет Блэкбери, Кэрол Грайдер и Джек Шостак были награждены Нобелевской премией 2009 за открытие «механизма защиты хромосом теломерами и ферментом теломеразой».

Можно сказать, что стараниями этих людей старость расшифрована!

Суть открытия состоит в том, что учёными был обнаружен ген продолжительности жизни.

Благодаря ферменту теломераза можно искусственно продлять возможности клеток к делению и предотвратить дегенерацию тканей и органов. Так учёные надеются побороть саму смерть!

От чего зависит продолжительность жизни?

По данным последних исследований долголетие человека напрямую зависит от длинны концевых участков хромосом, которые называют «теломерами». С годами в процессе деления эти участки становятся короче. По мнению учёных это и определяет возрастные изменения внешности. Когда теломеры становятся совсем не большими, клетка прекращает свое деление и организм перестает обновлять ткани.

Эксперименты над животными.

Различные эксперименты над животными позволили учёным более детально изучить работу фермента теломераза и выделить два основных гена, участвующих в процессах старения клетки: гены старости р16 и р19. В ходе исследований обнаружилось, что полное «отключение старения» у мышей делает невозможным дальнейшие опыты. Нестареющие мыши умирали от злокачественных опухолей.

Учёным пришлось прибегнуть к скрещиванию этих мышей с мышами, которые старели быстрее обычных по причине мутации гена BubR1. Скрещивание оказалось успешным и опыты на новой группе мышей позволили не только лучше изучить механизм работы гена р16, но и выделить ген р19, который тоже активно участвовал в процессе старения клеток.

Наука против старения – основные методы.

До недавнего времени, основной методикой борьбы со старением считался метод введения в человеческий организм стволовых клеток.

Весной 2006 года 59-летний новосибирский профессор Николай Григорьевич Колосов провел над собой скандальный эксперимент – он ввел в свой организм около 1,5 миллиарда стволовых клеток.

Уже к лету многие отмечали, что профессор заметно помолодел, а результаты его анализов показывали отличное крепкое здоровье.

Но годы идут и многолетнее изучение поведения фермента теломераза в клетках человеческого организма показывает, что данная методика может быть даже более перспективной.

Последние исследования привели учёных к неожиданному для них открытию: если ранее считалось, что само наличие фермента теломераза в клетке повышает её способность к делению, то с новыми исследованиями было обнаружено, что теломераза может находиться в спящем состоянии. Управляемая активация этого фермента может стать ключом к вечной жизни.

Стволовые клетки, как способ борьбы со старостью.

Ещё один перспективный метод борьбы со старением предлагает американо-австрийская группа учёных.

Предлагаемый ими способ продления жизни человеческого организма предполагает введение пациенту особого вида стволовых клеток.

Уникальная особенность этих клеток состоит в том, что они способны превращаться в клетки любых других органов и тканей. Этот метод учёные уже испытали на группе добровольцев со средним возрастом в 76 лет.

Полтора года постоянного приема стволовых клеток в форме таблеток показали у испытуемых заметное улучшение активности и здоровья в целом.

Так же позитивную ноту вносит то, что в процессе эксперимента не было выявлено ни каких побочных эффектов.

Основной минус методики введения пациенту стволовых клеток заключается в невозможности получить эти клетки искусственно и в необходимости забора их у донора.

Ген р16 и теломеразная теория.

В теории о теломеразе так же не обошлось без подводных камней. У неё имеется своя сложность в понимании роли этого фермента в жизнедеятельности клетки.

Помимо двоякой функции этого фермента, его способностью находиться в активном и не активном состояниях, самую большую загадку составляет то, что больше всего его содержится в раковых опухолях.

Наличие в раковых клетках фермента теломераза в не активном состоянии приводит к угнетению и ускоренному старению этих клеток.

Искусственно активировать ген старости можно только точечно, в определенных участках тканей и органов. Подобное воздействие на весь организм в целом не только вызывает утрату защиты от разрастания раковых тканей, но и приводит к стимуляции их роста. Как осуществить такое точечное воздействие на целый орган или только его часть пока остаётся одной из нерешённых проблем методики.

Нанотехнологии

Даже обычные исследования клетки требуют специфических инструментов и высоких достижений технического прогресса.

Что уж говорить об инструментах необходимых для генной инженерии? Относительно недавние открытия в нанотехнологической отрасли дали мощный толчок в развитии генетики, который сложно переоценить.

Без инструментов, которыми можно сверхточно оперировать клетку, многие методы генной инженерии невыполнимы.

Пероксисомы

Благодаря достижениям науки стала возможна работа с пероксисомами. Так называют специфические органы клетки, которые не содержат в себе ДНК и рибосомы. Они выполняют функцию некоего хранилища различных ферментов. А ферменты в свою очередь определяют, какие именно белки будет вырабатывать конкретная клетка.

Любая работа с геном продолжительности жизни — это в первую очередь работа с пероксисомами. И тут необходима высокая точность, чтобы воздействуя на ферменты внутри пероксисомы не повредить её функции. Речь тут идёт об очень не больших величинах – для сравнения, подковать блоху мифическому кузнецу было намного проще.

Другие подходы к решению проблемы.

Ещё один вариант решения проблемы старения предложили португальские учёные.

Они заметили, что в процессе митоза (деления клетки) могут происходить сбои, которые приводят к изменению числа хромосом внутри одной из клеток.

Как известно, в процессе деления клетки хромосомы равно разделаются между двумя новыми клетками. Изменение числа хромосом приводит к нарушению способности клетки к делению, что приводит к преждевременному старению.

Пускай данное открытие не окажется достаточным для достижения вечной жизни, но исследования в этом направлении в будущем могут помочь в лечении таких генетических заболеваний, как синдром Хатчинсона-Гилфорда или иначе синдром преждевременного старения.

Что сделать, чтобы прожить дольше?

А пока учёные всего мира вглядываются в свои электронные микроскопы и стараются обнаружить тайны вечной жизни, рекомендации к долголетию остаются неизменными:

1) Отказ от вредных привычек многократно уменьшит риски серьезных заболеваний. Стоит уточнить, что имеются в виду не только курение, злоупотребление алкоголем и наркомания, но и пристрастие к быстрому питанию и полуфабрикатам.

2) Орехи и сырые овощи способствуют нормализации обмена веществ. В варёных же овощах пропадает до 50% полезных антиоксидантов.

3) Гигиена и чистые зубы прибавят вам до 6 лет жизни. Что может показаться неожиданно значительной прибавкой. Все дело в том, что в полости рта могут плодиться самые разнообразные вредоносные бактерии. Некоторые из этих бактерий настолько опасны, что при ослаблении организма могут привести к развитию сердечнососудистых заболеваний.

4) Отдельным пунктом в гигиене стоит выделить мытьё в бане, процедуры распаривания в бане и традиционные методы закалки организма. Данные методики весьма эффективны для укрепления здоровья, но имеют противопоказания по состоянию здоровья. При неправильном их применении можно сильно себе навредить.

5) И не менее важно быть позитивным и стрессоустойчивым человеком в окружении хороших друзей.

Именно от психического настроя и поддержки окружающих зависит, насколько активно и эффективно человеческий иммунитет будет бороться с внешними и внутренними угрозами.

Мозг человека это очень тонкий инструмент и как именно наше мышление влияет через мозг на весь остальной организм пока для науки загадка.

Негативные последствия вечной жизни.

У всего есть и обратная сторона. Как не хотелось бы человеку победить все болезни и жить вечно, у смерти тоже есть свои важные функции:

– Естественный отбор и сохранение самого жизнеспособного ДНК.

– Регулирование населенности планеты.

– Преобразования одних биологических организмов в питательную среду для других биологических организмов.

– Смерть придаёт жизни особую ценность.

– Так же смерть является краеугольным камнем всех религиозных учений.

Если люди перестанут умирать, то относительно скоро они заполнят все свободное место на планете, а ещё раньше полностью истощат её ресурсы и вымрут от голода, и разрушения окружающей среды. Кто тогда будет достоин, что бы его жизнь была продлена, а кто нет – это очень сложный этический вопрос, который нам придется решать, когда мы добьёмся успехов в достижении вечной жизни.

Источник: https://mygenetics.ru/blog/nauka/nauka-otkryla-gen-stareniya-udastsya-li-prodlit-zhizn/

Как геном человека влияет на старение организма

Использование включения и выключения генов для решения проблемы старения

Старение организма человека является комплексным, сложным процессом, зависящим от множества различных факторов. Среди них важнейшее место занимают генетические факторы, а также факторы окружающей среды (стрессы, вредные привычки, экологические факторы, профессиональные вредности).

Взаимодействие этих факторов определяет метаболические процессы и надежность работы защитных систем клеток и тканей организма. Скорость старения существенно различается у разных видов, следовательно, старение обусловлено не только лишь механическим износом, но и генетической обусловленностью.

Ген отвечающий за старение

Генетиками доказано, что в процессе старения происходит нарушение экспрессии (активности) определенных генов. Но причиной этих изменений могут быть либо случайные повреждения генома (вследствие мутаций под действием свободных радикалов).

Либо множественные (так называемые плейотропные) побочные функции генов, которые контролируют развитие, рост и метаболизм организма.

Таким образом, абсолютных доказательств того, что главной причиной старения является определенная генетическая программа, пока не найдено.

Но, к сожалению, такой ген пока не найден, а процессы старения очень сложны и определяются не каким-либо одним, а большим количеством различных процессов, протекающих в человеческом организме.

Сейчас продолжается активный поиск генов-кандидатов, ответственных за старение, и, вероятно, это будет не какой-либо один ген, а несколько (так называемая генная сеть).

И эту генную сеть можно будет в будущем изменять при помощи активно развивающихся нанотехнологий и методов генной инженерии.

Что именно определяет продолжительность жизни

Учитывая различия в продолжительности жизни тех или иных видов животных, можно однозначно ответить на вопрос о том, определяют ли гены продолжительность жизни. Да, несомненно определяют. Некоторые виды животных живут меньше года, в их организмах возникают старческие изменения и они умирают.

И, напротив, известно, что существуют виды крокодилов, которые не стареют. Срок жизни обыкновенной щуки составляет до 250 лет, а некоторых видов черепах до 300 лет, хотя на этих животных так же воздействуют неблагоприятные факторы окружающей среды, как и на организм человека.

Отличия заключаются лишь в организации генома.

Кроме этого, учеными давно замечена связь между наследственностью человека и его продолжительностью жизни. Известно, что потомки долгожителей сами живут существенно дольше.

Искусственное влияние на ген, отвечающий за старение

Недавно были проведены успешные эксперименты по отключению функции (нокаутации) гена, отвечающего за старение простейшего червя, благодаря чему продолжительность его жизни увеличилась в шесть раз.

В состав организма этого червя входит лишь тысяча клеток.

Кроме этого, особенность как данной группы червей, так и мух-дроздофил заключается в том, что они в старости не страдают ни от рака, ни от сахарного диабета 2 типа, ни от болезни Альцгеймера.

Несомненно, эти организмы очень примитивны по сравнению с человеческим организмом.

Таким образом, используя генно-инженерные методики, ученые пока научились только влиять на продолжительность жизни отдельных простых организмов.

Но развитие генной инженерии и нанотехнологий стремительными темпами позволяет надеяться, что в недалеком будущем данные технологии будут применимыми для коррекции генома человека.

Эксперименты с мышами

Обнадеживающе выглядят и результаты экспериментов итальянского ученого Пелличи, выключившего в геноме мыши всего лишь один из нескольких десятков тысяч генов, благодаря чему было достигнуто увеличение продолжительности мыши на 30%. Данная мутация предотвратила образование белка р66sch.

Данный белок участвует в запуске механизма апоптоза (запрограммированного самоубийства клетки), тем самым укорачивая жизнь клеток и приближая наступление старческих изменений.

Если обнаружить и выключить подобный ген у человека, то это позволит продлить и жизнь человека на 30%, то есть, приблизительно на 30 лет.

Ген старения у человека

Вероятно, в возникновении старческих изменений участвуют не один, и даже не десять генов, а очень многие гены, каждый из которых определяет темпы старения человека.

При этом поиск самого главного гена старения можно сравнить с поиском самого главного муравья в муравейнике, который командует всеми остальными муравьями.

Необходимо создавать целые сети генов и оценивать ген-генные взаимодействия.

Многие ученые считают, что наследственные факторы регулируют темпы старения приблизительно на 25%, но это еще до конца не известно.

В настоящее время известно, что ген аполипопротеина Е (АпоЕ) во многом предопределяет долгожительство. У долгожителей, чей возраст был более 100 лет, отчетливо преобладал Е2 аллель гена АпоЕ над Е4 (Schachter et al., 1994). А наличие Е4 аллеля, наоборот предрасполагало к преждевременному старению, развитию атеросклероза, в частности, инфаркта миокарда, а также болезни Альцгеймера.

Пероксисомы

Кроме этого, генами, определяющими долголетие, являются гены рецепторов пролиферации пероксисом некоторых типов. Пероксисомы – это органеллы клеток человеческого организма, обезвреживающие токсичные перекиси и свободные радикалы, которые существенно увеличивают темпы старения.

Полиморфизм L162V гена пролифератора пероксисом типа предрасполагает к развитию у гетерозигот раннего инфаркта миокарда и атеросклероза. Это существенно ограничивает продолжительность жизни. Данный полиморфизм вызывает снижение чувствительности рецептора к его лигандам. Это снижает защитную функцию пероксисом и повышает окислительный стресс, вызываемый активными свободными радикалами.

Известно, что естественными активаторами данных рецепторов являются 3-полиненасыщенные жирные кислоты – известные геропротекторы. Однако эти вещества достаточно слабые активаторы рецепторов пролиферации пероксисом типа, и поэтому они, несомненно, увеличивают продолжительность жизни, но не на много лет.

Препараты фибраты, применяемые при лечении атеросклероза и дислипидемий, более сильные активаторы данных рецепторов, но, к сожалению, обладают многими побочными эффектами. Изобретение сильного активатора этих рецепторов без существенных побочных эффектов позволило бы добиться успеха в продлении жизни человека, над чем сейчас и работают многие ученые.

Гены долголетия

Также генами долголетия являются гены ангиотензин-конвертирующего фермента, гены, кодирующие МНС-гаплотип, и метиленотетрафолат редуктазы. Убедительно доказана связь долголетиями с генами митоходриальной ДНК, апопротеинов А 4 и В.

Изучение генов старения в последнее десятилетие приносит серьезные результаты: у различных животных в экспериментах выявлены десятки генов, активация либо деактивация которых замедляла процессы старения.

Повышалась стрессоустойчивость животных, их способность к размножению. Таким образом, недалек день, когда и у человека можно будет изменять активность различных генов.

Активировать «гены долголетия» и деактивировать «гены старения», тем самым продлевая нашу жизнь.

Источник: https://etogenetika.ru/novosti/vliyanie-genoma-na-starenie-organizma/

Гены: можно ли повлиять на процессы старения

Использование включения и выключения генов для решения проблемы старения

Никто из нас не хочет стареть. Старение является символом смерти, внушает страх. Больше всего людей пугает внешнее проявление старости: одряхление кожи, выпадающие зубы, ухудшение всех функций организма. Однако ген старения присутствует в каждом живом организм. У кого-то получается стареть красиво, но для большинства людей увядание тела – большое испытание.

Есть ли какая-то возможность предотвратить этот процесс? Со времен своего существование человечество пытается найти ответ на этот волнующий умы вопрос, надеясь, что все-таки существует лекарство от старости и смерти.

Возможно ли бессмертие?

Эту философскую загадку ученые пытаются разгадать долгое время. Множество историй, фильмов, научных работ создано на эту тему. Существует даже специальная наука о бессмертии, называемая «иммортология». Большинство религиозных течений считают, что душа бессмертна, но телу, увы, отведено лишь короткое время на земле.

Несмотря на то, что бессмертие рассматривается научными умами скорее как идея, попытки найти ответ на вопрос «можно ли жить вечно», делаются постоянно. На сегодня ученые провели огромное количество исследований относительно генетики старения. И мы можем ознакомиться с их находками, приоткрывающими тайну увядания и смерти организма человека.

Как остановить старение?

Существует около 500 теорий о том, как отсрочить и остановить старость. Самыми популярным в современной науке считаются 3 типа исследований относительно вечной жизнедеятельности человека:

  • стволовые клетки;
  • генетика старения;
  • нанотехнологии.

Вечная молодость вместе со стволовыми клетками

Стволовые клетки ответственны за обновление. Когда процесс их замены замедляется и ухудшается, организм дает сигнал о старении. Клетки не делятся и начинаются процессы увядания.

Полипотентные клетки (еще одно название стволовых клеток) помогают человеческому организму развиваться. Сегодня наука хорошо продвинулась в этом вопросе. Ученые научились выращивать из таких клеток ткани, органы и выработали их методы размножения в лабораторных условиях. Это немалый вклад на пути к вечной жизни. Самые первые открытия в этой сфере сделаны американскими учеными.

Ген продолжительности жизни. Теломеразная теория и ген P16

Несмотря на то, что стволовые клетки способны надолго продлить молодость, а также восстанавливают организм после любых повреждений, главным образом к старению и смерти приводят процессы в геноме человека. Активность генов с возрастом меняется. В начале жизни человек эффективнее противостоит вирусам, бактериям, чем в конце. Геном укорачивается. Из этих наблюдений происходит теломеразная теория.

Теломеры – участки ДНК, связанные с биологическими часами человека. Делясь, такие клетки становятся все короче и короче. И когда они достигают предела, происходит аппоптоз – гибель клетки.

Интересный факт: раковые клетки отличаются от обычных тем, что содержат теломеразу, фермент, препятсвующий уменьшению теломеров. Поэтому онкоклетки не стареют. Присутсвие ДНК кода теломеразы в здоровой клетке сделает ее раковой.

Существует еще одна генетическая причина старения клеток. Эта находка принадлежит китайским ученым. Предположение о присутствии гена старения существует давно и оно имеет основание. Ген старения называется P16. Этот ген напрямую связан с теломерами, он влияет на их длину.

Как продлить молодость, воздействуя на ген P16? Оказывается, сдерживание активности этого гена может увеличить жизнь клетки, способствовать уменьшению сокращения теломеров

Вывод прост: нужно заблокировать этот ген, и тогда клетка сможет жить вечно. Но возможно ли это? Ответ зависит от будущего медицины. На данном этапе развития науки ученые работают над вопросом. Существует предположение, что блокировка P16 станет возможно благодаря нанотехнологиям.

Нанотехнологии против возрастных изменений

ПрименениЕ нанотехнологий в сфере блокирования процессов старения организма, заключается в следующем. Ученые сделали предположения, что нанороботы смогут блокировать любые негативные изменения в клетках. Так, молекулярные роботы будут осуществлять своеобразную «починку» клеток, совершенствуя тело полностью. Но только будет ли тогда человек человеком?

Другие пути достижения бессмертия в науке

Ученые считают, что продлить себе жизнь можно и другими способами. К ним относятся:

  • пониженная температура тела. Эксперименты проводятся в Японии. Материалом для них служат мыши. Считается, понижение температуры тела на 1 градус удлиняет жизнь на 15-20 %.
  • трансплантология. Активно развивающийся метод, становящийся привычным явлением в мире. Совершено уже более 40 тысяч операций по трансплантологии. Замена органов не победит смерть, но существенно увеличивает длину жизни.
  • Смена носителя сознания (клонирование). В некоторых странах уже проводились опыты клонирования организмов и эмбрионов. На сегодня ученые пришли к выводу, что данная процедура в будущем даст много негативных результатов для человечества, но данный вывод не окончателен.
  • Крионика. Представляет собой замораживание тела, криохранение. Такой подход также получает все большее распространение. Некоторые ученые считают, что сама природа подсказывает этот секрет сохранения жизни. Ведь многие организмы выдерживают заморозку и живут дальше.

Что мы можем сделать сегодня для своего долголетия?

Важнейший орган, отвечающий за наше долголетие – это мозг. Именно его еще не научились пересаживать. Не зря говорят, что нужно беречь нервы. Ведь нейроны не имеют способности восстанавливаться и размножаться, в отличие, например, от клеток кишечника.

С годами число нервных клеток в мозге уменьшается. Но этому органу в то же время свойственна пластичность. Нейроны не восстанавливаются, но мозг может перестраивать свою работу в уже существующей ситуации. Жизнеспособные клетки выполняют функцию погибших.

Чтобы наш мозг как можно дольше продолжал свою работу, нужно:

  1. Беречь нервные клетки, не подвергая их губительным воздействиям. Отрицательно воздействует на нейроны алкоголь, инфекционные заболевания, стрессы, непостоянное артериальное давление.
  2. Тренировать мозг, функции нервной системы. Упражнения включают в себя тренировку физических способностей (спорт, танцы, закаливание, бег, упражнения для дыхания), тренировку умственных способностей (развитие памяти, функций внимания, упражнения для логики).
  3. Немаловажным для долголетия является психологический фактор. Оказывается, если человек пережил какое-то заболевание и выздоровел благодаря своей силе воле, он скорее всего будет жить дольше, чем тот, кто жил спокойной размеренной жизнью, ничем не болея. Неспроста придумали такую науку, как психосоматика. Все процессы, происходящие в нашем теле связаны с нашими глубинными установками, переживаниями, процессами подсознания. Положительные мысли – эффективное, рекомендуемое врачами лекарство.

Оптимизм и вера также способствуют долголетию

Что будет, если люди будут жить вечно?

Наука развивается, с нею и возможности медицины. Вполне возможно, что человек сможет подчинить себе процессы старения. С одной стороны здесь есть плюсы.

Продлив жизнь, люди смогут наслаждаться всеми ее процессами дольше, можно будет не торопиться с рождением детей. Но если говорить о бессмертии, то здесь есть другая сторона.

Перенаселенность планеты может повлечь голод, безработицу и жизнь, которая не будет радовать никого. Поэтому вопрос о бессмертии надолго останется спорным и философским.

Также далеко не все жаждут вечной жизни. Вспомним уже пожилых людей, им свойственна усталость от существования. Прожив жизнь, люди понимают, что все не вечно, больше тяготея к спасению души.

В заключении отметим, что являясь высокоразвитым существом, человек может продлить свою жизнь, даже не прибегая к новейшим методам медицины.

Тренировки, саморазвитие, забота о себе, позитивный настрой делают немало для здоровья, продления молодости и красоты. Все в наших руках.

Креативные мысли, идеи, которые передаются другим, дети, обучение других людей продлевают нашу жизнь и дарят бессмертие на духовном уровне.

Источник: https://molod24.ru/omolozhenie-organizma/gen-stareniya

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.